JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY:KAKINADA

KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for ECE, JNTUK

III Year-II Semester

Т	Р	С
4	0	3

DIGITAL SIGNAL PROCESSING (RT32042)

Prerequisite Course:

-Nil-

Course Description and Objectives:

- Define and use Discrete Fourier Transforms (DFTs)
- Use Z transforms and discrete time Fourier transforms to analyze a digital system.
- Understand simple finite impulse response filters
- Learn the design procedures used for filter bank
- Learn to program a DSP processor to filter signals

Course Outcomes:

Upon completion of the course, the student will be able to achieve the following outcomes.

COs	Course Outcomes	
1	Estimate the spectra of signals that are to be processed by a discrete time filter, and to verify the performance of a variety of modern and classical spectrum estimation techniques.	3
2	Design and simulate a digital filter	3
3	Design new digital signal processing systems.	3
4	Design and realize FIR, IIR filters	3
5	Program a DSP processor to filter signals	3

SYLLABUS

UNIT – I

INTRODUCTION: Introduction to Digital Signal Processing: Discrete time signals & sequences, linear shift invariant systems, stability, and causality. Linear constant coefficient difference equations. Frequency domain representation of discrete time signals and systems.

UNIT – II

DISCRETE FOURIER SERIES & FOURIER TRANSFORMS: Properties of

discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: Properties of DFT, linear convolution of sequences using DFT, Computation of DFT, Fast Fourier transforms (FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms, Inverse FFT.

JAWAHARLAL NEHRUTECHNOLOGICALUNIVERSITY:KAKINADA

KAKINADA-533003, Andhra Pradesh, India

R-13 Syllabus for ECE, JNTUK

UNIT – III

REALIZATION OF DIGITAL FILTERS: Review of Z-transforms, Applications of Z – transforms, solution of difference equations - digital filters, Block diagram representation of linear constant-coefficient difference equations, Basic structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function

$\mathbf{UNIT} - \mathbf{IV}$

IIR & FIR DIGITAL FILTERS: Analog filter approximations – Butter worth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples: Analog-Digital transformations Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques, Frequency Sampling technique, Comparison of IIR & FIR filters.

UNIT – V

MULTIRATE DIGITAL SIGNAL PROCESSING: Decimation, interpolation, sampling rate conversion, Implementation of sampling rate conversion.

UNIT – VI

INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator (MAC), Modified Bus Structures and Memory Access schemes in DSPs Multiple access memory, multiport memory, VLSI architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS 320C5X- Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, Some flags in the status registers, On- chip registers, On-chip peripherals.

Textbooks:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI.
- 3. Digital Signal Processors Architecture, Programming and Applications, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002.
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House.

References:

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra
- 5. Harris, Thomson, 2007.
- Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006